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Abstract — Although much research has been carried out 

on finding features for instrument recognition systems, little 
work has focused on specifically the violin’s entire timbre 
space. Suitable features from which a computer can assess 
the quality of a violinist’s playing have been sought and the 
classification of violin note sound quality is investigated in 
this paper. The eventual outcome of this work can be applied 
in various systems including the development of a violin or 
bowed string instrument teaching aid, in automatic music 
transcription and information retrieval or classification 
systems. 

Keywords — classification, clustering, data analysis, data 
representation, perception, sound analysis, violin timbre.  

I. INTRODUCTION 
O 
be

gain better understanding of the relationship 
tween violin playing technique and the sound 

produced, a suitable means of quantifying and classifying 
these differences is needed. This is so that guidelines may 
be established for not only good violin sound but also for 
poorer or beginner violin playing with the ultimate aim of 
developing a computer based violin teaching aid, of which 
none exists. The more general area of quantifying 
beginner and professionals standard legato violin note 
samples using signal processing techniques was presented 
in [1, 2]. This has enabled the representation of violin 
sounds by suitable descriptors. Violin playing faults have 
been identified and are limited to nine faults at this stage. 
This paper considers the classification of violin notes 
using up to fifteen features. Two tasks are put to a k-
means nearest neighbour classifier: the first is the 
detection of beginner note from a professional standard 
note and the second is much more specific, involving 
individual fault detection. 

In the following sections, existing research is briefly 
presented, followed by a description of the data set 
requirements and how it was obtained, after which the 
listening tests are detailed. The choice and brief 
explanation of the features used in the classifier are then 
given, followed by the classification method and results 
obtained.  

II. EXISTING RESEARCH 
Much existing research on violins has been carried out 

in order to better understand and emulate the making of 

top quality sounding instruments. Many methods have 
been applied to gain insight into the complex interactions 
between the various components of stringed instruments.  
Work is ongoing considering the problem of quantifying 
perception relating to violin sound quality [3]. However, 
work exploring the effect a player has on the violin sound 
produced is limited. Finding features which are suitable 
for quantifying the violin’s timbre space involves 
exploring the effect of a player on sound quality. Many 
features, although very useful in determining one 
instrument from another [4, 5], are not appropriate for 
representing the subtleties due to playing technique or for 
use within an individual instrument’s timbre space.  
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III. DATA SET 
As no suitable data set was readily available, one had to 

be made. Much thought was given in creating this data set 
in terms of what was needed, obtainable and viable. The 
ideal data set would be a type of violin timbre real sound 
continuum. Unfortunately, this would be very time 
consuming, if not near impossible to obtain. The first bow 
stroke a beginner must learn is legato, which literally 
means ‘tied together’ or smoothly connected [6] as 
opposed to slurred, which refers to multiple notes in a 
same bow stroke. Although legato playing encompasses 
all lengths of bow stroke, in this work it means using full 
bows. Mastering this ensures enough bow control upon 
which the student can develop other bow strokes, such as 
staccato (‘disconnected’ [6]). Since the style or type of 
bow stroke used effects the readings obtained, only 
professional standard player legato notes will be used and 
the beginner notes will be compared to these.  

The data test set consists of two same sized groups, one 
with beginner notes and the other with professional 
standard player legato notes. The samples all contain one 
note and are of varying lengths and pitches, making it 
more appropriate to use features which do not dependent 
on ether note length or pitch. The data samples were 
obtained in a recording studio using a stereo pair of 
dynamic microphones, a condenser microphone switched 
to omni, and a large diaphragm condenser microphone 
also with omni-directional pick-up pattern. The tracks 
were recorded onto DAT, mixed and saved as monophonic 
wav files. The recordings were all made in the same 
studio, using the same microphones and set up as well as 
the same violin and bow. 

IV. LISTENING TESTS 
Listening tests have been included to remove the 

subjective nature of this research by showing that other 
trained string players can hear and recognize the faults and 
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sound quality descriptions used and most importantly, that 
a priori labels for the classifier may be obtained. From the 
results of these listening tests, it is hoped that a 
relationship can be established between what people 
perceive and any quantitative features for the sound 
samples. These tests are aimed at professional standard 
violinists in particular but, to increase numbers, cellists 
and violists have also been included. 

The listening group consisted of twenty-one string 
players. The listeners received no training, only a copy of 
the testing process steps and an explanation of the terms. 
A play list which includes all the beginner and legato good 
note samples, 176 samples in total, exists. As soon as the 
listener activates the testing/listening program, a random 
play list is generated consisting of all samples from the 
list. After having heard the note, the listener selects the 
terms which best characterise the sound and grades the 
overall quality. The sound characteristics list includes 
descriptions of playing faults and the overall sound quality 
is a grade between 1 (very poor) and 6 (excellent). The 
faults or sound characteristics are crunching, skating, 
nervousness (uncommitted, faltering sound), intonation, 
bow bouncing, extra note, sudden end to note, poor start to 
note and poor finish to note. 

The exact play list for each listener only becomes 
available at the end of the listening test. The test 
progresses at a speed controlled by the user and each 
sample can only be played once. AKG K240 ‘Monitor’ 
(600 Ohms) headphones were used and samples were 
accessed and played through Matlab. The consistency of 
the results obtained from this test were checked and found 
to be acceptable. Normalising these results allowed for an 
average listener to be established. This average listener is 
what is used for investigating how violin timbre is 
perceived and for use as the a priori sample labeling in the 
classifier. 

V. FEATURES 
The efficacy of many features from the time, spectral 

and cepstral domains have been tried for their ability at 
representing change within the violin timbre. Based on the 
visual inspection of these results and their ability at 
differentiating between beginner note and professional 
standard legato notes, features were selected for use in the 
classifier. The fifteen features selected are given in Table 
1.  

TABLE 1: FEATURES USED. 
Feature  Description   
1 Time Domain Mean (TM) 
2 Time Domain Kurtosis (TK) 
3 CQT Harmonic Strength (CQTH) 
4 PSD <190Hz (PSD190) 
5 Spectral Flatness Measure Mean (SFMM) 
6 Spectral Flatness Measure Variance (SFMV) 
7 Spectral Contrast Measure <190Hz (SCM190) 
8 Real Cepstral Coefficients Mean (RCCM) 
9 Real Cepstral Coefficients Variance (RCCV) 
10 Real Cepstral Coefficients Kurtosis (RCCK) 
11 1st Real Cepstral Coefficient (RC0) 
12 2nd Real Cepstral Coefficient (RC1) 
13 6th Real Cepstral Coefficient (RC5) 
14 Spectral Centroid Variance (SCV) 

15 Mel Cepstral First Coefficient Mean (MC0M) 
 

Although up to eighteen feature vectors have been used 
previously in the classifier as it is, exceeding fifteen 
features is not practical for time and computing reasons. 
All of these features group the beginner samples in a 
visually discernable way from the professional standard 
legato notes, which was certainly not the case for most of 
the features tested. These features are all standard but 
some have been modified slightly to better suit the 
research aims, such as the PSD and spectral contrast 
measures below 190Hz, the first of which can be seen in 
Figure 1.  The lowest note on a violin tuned to A440, is 
the open G string at ≈196Hz. Looking at the frequency 
content below the violin’s frequency range was done in 
the expectation that information relating to the lack of 
playing ‘neatness’ might be revealed, as can be seen in 
Figure 1 where the beginner samples have more frequency 
content below the lowest note than the professional 
standard notes do.  
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Fig. 1. Spectrum Power Present Below 190Hz. 
Although the features given in Table 1 split the data set 

into distinct groups, three features completely separate the 
sample groups. They are the time domain mean, the CQT 
harmonic strength and the spectral contrast measure below 
190Hz. How these features perform in a classifier is 
presented next.  

VI. CLASSIFICATION  
Classification is the general term given to organizing or 

grouping similar data together according to selected 
characteristics or some common feature. Grouping data 
together based on similar patterns or descriptive features 
allows a class label to be associated with the group. The 
most significant aims of classification relate to data 
simplification and prediction, increasing the efficiency of 
tasks such as information retrieval [7]. In this paper, the 
classification of note samples into beginner or professional 
and fault identification are tested. The aim is to provide 
objective and stable classification for the subjective nature 
of violin sounds.  

The first stage of the classification process involves 
clustering which is used to find centres that reflect the 
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distribution of data points [8]. Running the k-means 
clustering algorithm provides the prototype vectors which 
are then used in the k-NN classifier. Although many 
clustering methods exist, k-means is one of the most often 
used because of its simplicity and converges well with the 
Euclidean distance which is given in equat   ion 1 [8].
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One advantage of using the Euclidean distance is that 

each feature remains equally important and no correlations 
between variables influence the outcome. The k-means 
clustering code, taken from the Somtoolbox [9], uses the 
iterative partitional clustering algorithm put forward by 
Jain and Dubes, a description of which can be found in 
[8]. An advantage of this algorithm is that it automatically 
assigns items to clusters. The disadvantages are that the 
number of clusters must be pre-selected and that all items 
are forced into a cluster, making it very sensitive to 
outliers. The squared Euclidean distance metric is used 
which is computationally faster for clustering than the 
Euclidean distance shown in equation 1. The clustering 
algorithm remains unaffected by this change, as it is a 
partiti

e.  
For the first task, two clusters are sought: one for poorer 

quality sounds and another for professional violinist notes. 
The ‘beginner’ and the ‘professional’ clusters provide the 
k-NN classifier with its prototype vectors. They are two 
15 x 1 vectors. For the fault identification task, clusters are 
formed according to the presence or absence of a 
particular fault as perceived by the listener. Prior to use in 
the classifier, these cluster vectors were checked by 
comparing their values with the means of all samples for 
each feature associated with its respective cluster. The 
algorith

ade.  
The data set’s features are stored in a 176 by 15 array, 

where 176 is the total number of samples and 15, the 
number of features. A proximity matrix is then calculated 
using the squared Euclidean measure between the 
prototypes and each feature vector. This matrix is the 
input for the k-NN classifier, to which class labels are 
assigned.  These labels are then compared with the a priori 
labels to obtain the classifier accuracy reading. Classifier 
accuracy is the probability of correctly labeling a 
randomly selected sample. The k-NN rule classifies a 
sample by assigning it the label which is most often 
associated with its k-nearest samples. When k=1, every 
sample is assigned to the class of the nearest cluster or 

ttern. In practice, k=1 is often used, as it is in this work.  
Should the classification process be carried out on the 

entire data set, very specific model building information 
will be obtained. Cross-validation techniques are methods 
for detecting and preventing classifier over-fitting, 
checking classifier accuracy estimation and generalisation 
potential. It is a way of ensuring that a classifier can 
perform in an unsupervised situation. To conduct cross-
validation, the data set is put in a random order after 

which, a portion of the data set is put aside as a ‘training’ 
set and leaving the rest for testing. In n-fold cross-
validation, the data set in put into n equal sections where 
n-1 sections are used for training and the remaining 
section for testing. The means are taken of the n fol

 used in this work.   

VII. RESULTS 
 All results have been obtained using four-fold cro

alidation for both tasks and are p

A. Beginner vs. Professional  
A summary of the results obtained for the detection of 

beginner from professional standard legato notes based on 
the number of features used is given in Table 2. From the 
results returned using the features given in Table 1, it is 
possible to detect a beginner note from a professional 
standard legato note with 96.59% accuracy using just one 
feature. Two features returned this result; they are the time 
domain mean and the CQT harmonic strength. Using all 

s return detection rates of 91.10% 
TAB

No. 
 I RESU UMMARY. 

Fe
1 96.59 96.59 
2 96.59 96.59 
3 96.59 96.59 
4 96.59 96.59 
5 96.59 96.59 
6 96.59 96.59 
7 95.45 95.45 
8 95.45 95.45 
9 95.45 95.45 
10 95.45 95.45 
11 95.45 95.45 
12 93.94 92.05 
13 93.18 92.05 
14 92.61 91.48 
15 91.10 90.91 

The monothetic results can be seen in Table 3. This has 
been included so that the performance of each feature can 
be seen. Of interest in this table are the results returned 
when features TM, CQTH and SCM190 are used as these 
features separated the data set 100% accurately in their 
respective domains, indicating that a simple threshold 
value could 

MONO ESU

T Tr

be used. 
TABLE 3: THETIC R LTS TASK I. 
Feature  est % ain %   
TM 96.59 96.59 
TK 91.86 91.48 
CQTH 96.59 96.59 
PSD190 51.70 50.57 
SFMM 59.85 53.41 
SFMV 83.33 85.80 
SCM190 92.05 92.05 
RCCM 91.48 91.48 
RCCV 90.34 90.34 
RCCK 86.36 88.64 
RC0 87.88 88.07 
RC1 90.34 90.34 
RC5 87.5 86.36 
SCV 67.05 64.77 
MC0M 48.48 46.59 

When features TM, CQTH and SCM190 are used in the 
classifier, although the three highest results are returned, 
they are not 100%. A possible explanation for this is the 
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B. Fault Detection 
Individual fault detection using this feature set did not 

prove to be very effective. Only one fault, player 
nervousness, was detected to 73.67% train and 77.84% 
test. Increasing the number of features in this task did not 
significantly alter the results but caused the error reading 
to decrease. Using twelve and thirteen features returned 
72.54% and 72.16% respectively on its training set and 
71.02% on the test sets. The features returned for detecting 
player nervousness detected other faults too but a gap of at 
least 10% exists between its detection and the detection of 
any other fault.  

Playing fault detection was improved by using different 
features. Using features which did not necessarily group 
the beginner notes and the legato professional standard 
notes distinctly, improved the results for fault detection. 
The features used were: TM, moving mean variance, 
RCCM, RCCV, RCCK, RC0, RC1, RC3, SCM, SFM, 
SFMM, SFMV, SFM skew, PSD, autocorrelation 
function. Using combinations from this feature list, it was 
possible to detect playing faults as can be seen in Table 4.  

Playing faults bow bouncing and extra note, achieved 
the highest accuracy readings at 90.15% and 90.34% on 
their respective training sets, 92.61% and 89.77% on their 
test sets. Crunching, bow bouncing, extra note, poor start 
and poor end to note all returned the same feature 
combination associated with their respective top detection 
readings. Skating, poor intonation and sudden end to the 
note all use the same ten feature combination to achieve 
detection. Although detection results are lower for 
nervousness, the feature combinations do not overlap at 
detecting any f theo  other faults, making it also possi

sness ner
T

. 
4: TASK SUMMARY. 

No
Fe

Train % Test 

1 73.48 76.14 nervousness 
2 83.33 86.36 bow bounce  
3 87.12 85.80 bow bounce 
3 87.69 89.77 extra note 
4 90.15 92.61 bow bounce 
4 90.34 89.77 extra note 
5 89.77 90.34 bow bounce 
5 90.34 89.77 extra note 
6 87.12 85.80 bow bounce 
6 87.69 89.77 extra note 
7 87.12 85.80 bow bounce 
7 87.69 89.77 extra note 
8 87.12 85.80 bow bounce 
8 87.69 89.77 extra note 
9 83.33 86.36 bow bounce 
10 83.14 85.80 bow bounce  
11 83.33 86.36 bow bounce  
12 83.33 86.36 bow bounce  
13 83.33 86.36 bow bounce  
14 83.14 86.36 bow bounce  
15 60.23 60.23 nervousness 

Results of above 83% are returned when two to 
fourteen features are used, all detecting bow bouncing and 
extra note. Fault detection is less conclusive when fifteen 
features are used as all training and testing sets return 
about 60% accuracy. The results obtained for detecting 

bow bouncing and extra note are very close as can be seen 
in Table 4. The results for detecting extra note are always 
marginally higher than those returned for detecting bow 
bouncing when two to ten features are used. However, 
using ten to fourteen feature combinations provides 
solutions for detecting bow bouncing only. All ten, eleven 
and twelve feature combinations provide results that are at 
least ≈8% higher for detecting bow bouncing than for the 
detection of any other fault. The thirteen and fourteen 
feature combinations return results for detecting bow 
bouncing which are at least ≈5% higher than for any other 
fault. Bow bouncing can be detected to above 83% 
accuracy. 
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VIII. CONCLUSION 
Detecting good sound from beginner sound can be 

achieved returning accuracy results of just below 97% 
using one to six features taken from the feature list given 
in Table 1. Much feature redundancy is present though as 
all combinations have either feature one or three pre

th of which return 96.59% accuracy on their own.  
The presence of playing faults can be detected but 

individual faults are harder to isolate. Only three specific 
faults can be detected independently so far. They are 
nervousness, using the feature list given in Table 1, bow 
bouncing, and extra note which use a different feature list, 
given in Section VII.B. The detection accuracy rates for 
the other faults are all closely grouped together, and return 
the same feature combinations. This is due in part to a 
sonic similarity between certain faults and that the samples 
in the data set often contain more than one fault. One 
possible way around this would be to use samples which 
contain only one fault at a time but this will be difficult as 
playing faults rarely occur independently. Another would 
be to find new features. Location dependent features, such 
as those pertaining to the at

uld be more informative.  
The results for both tasks have been obtained via cross 

validation on one data set. It remains to
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